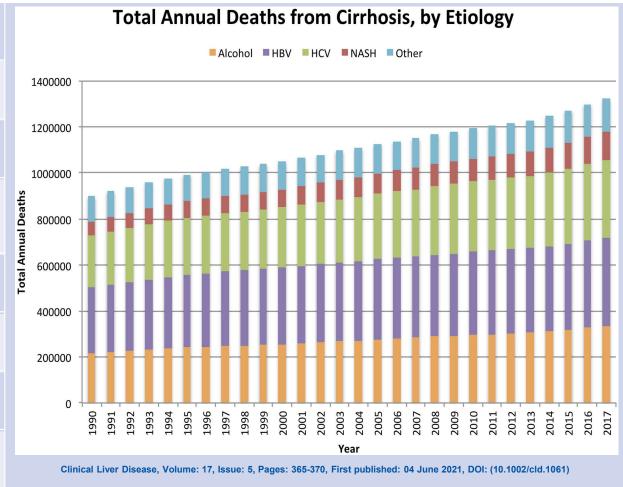
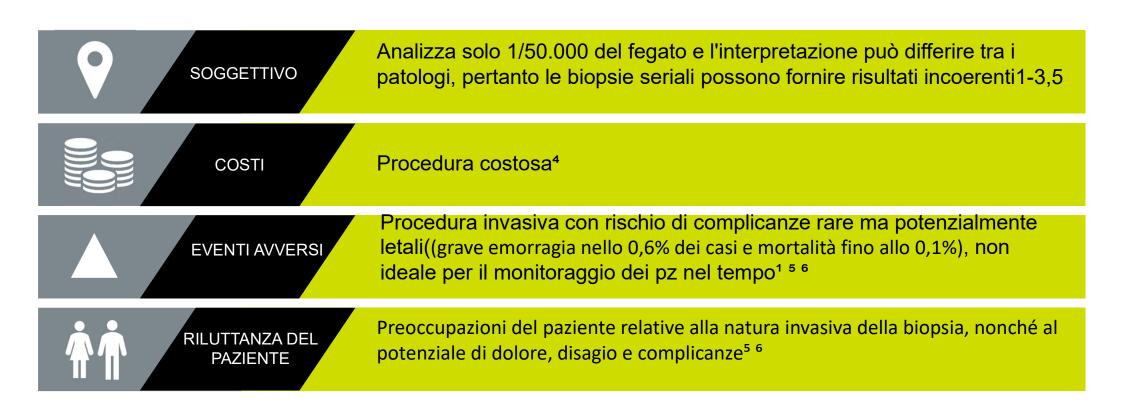


Diagnostica in epatologia...solo non invasiva?


Dr.ssa Emanuela Amadei Presidente @SIEMC

L'epatopatia cronica è un problema diffuso in tutto il mondo.


EZIOLOGIA

VIRALI(HCV,HBV,HBV+HDV,HEV,HIV) NAFLD/NASH **ALCOLICHE** AUTOIMMUNI/COLESTATICHE(AIH I e II,CBP,CSP, Sindromi da Overlap) DA FARMACI(Emocromatosi, Morbo di Wilson) DA ACCUMULO CONGENITE(feficit di alfa 1 anti tripsina) **GRANULOMATOSICHE**

Nel 2030 2.7 miliardi di persone sovrappeso/obese nel mondo

La biopsia è lo standard di riferimento per l'identificazione della fibrosi, ma è associata a numerose limitazioni:15

1. EASL. J Hepatol 2015;63:237–264; 2. Rockey DC et al. Hepatology 2009;49(3):1017–44; 3. Sumida Y et al World J Gastroenterol 2014;20(2):475 – 485; 4. Diehl AM et al. N Engl J Med 2017;23;377(21):2063–2072; 5. Anstee QM et al. Hepatology 2019; doi: 10.1002/hep.30842; 6. Leoni S et al. World J Gastroenterol 2018; 24(30):3361–3373.

I test non invasivi (NIT) offrono modi alternativi per determinare il grado di fibrosi

Sono riproducibili, ampiamente disponibili e relativamente a basso costo₁₋₄

MONITORAGGIO/

Modo semplice e sicuro per supportare il monitoraggio della malattia nel tempo¹

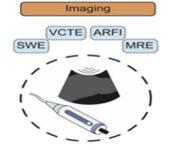
CONVENIENTE

Può essere conveniente rispetto alla biopsia¹

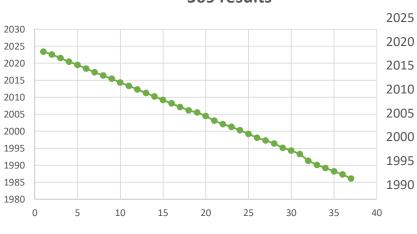
VALUTARE LA FIBROSI Valutare il livello – ad es. assenza o presenza – di fibrosi²

MAGGIORE
IDENTIFICAZION
E DELLA F-A

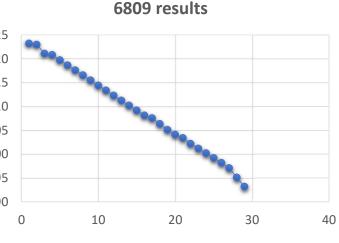
L'uso sequenziale di NIT può aumentare il numero di pazienti identificati con fibrosi avanzata³

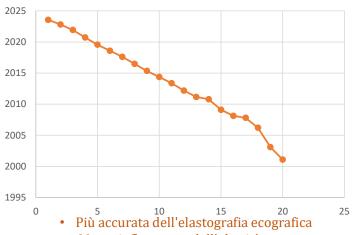

^{1.} Tapper EB et al. *Am J Gastroenterol* 2015; doi: 10.1038/ajg.2015.241; 2. Lucero C et al. *Gastroenterol Hepatol* (N Y). 2016;12(1):33–40; 3. Srivastava A et al. *J Hepatol* 2019;71(2):371–378; 4. Anstee QM et al. *Hepatology* 2019; doi: 10.1002/hep.30842.

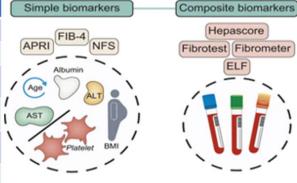
I test non invasivi sono stati un'area di ricerca intensiva negli ultimi decenni con un impatto importante sulla pratica dell'epatologia


Si basano

- sulla quantificazione dei biomarcatori
- sulla misurazione della rigidità epatica, utilizzando tecniche di elastografia basate su ultrasuoni o risonanza magnetica

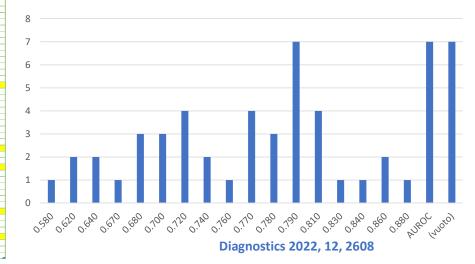

Combinare quando possibile> valutare la discordanza >considerare la biopsia epatica

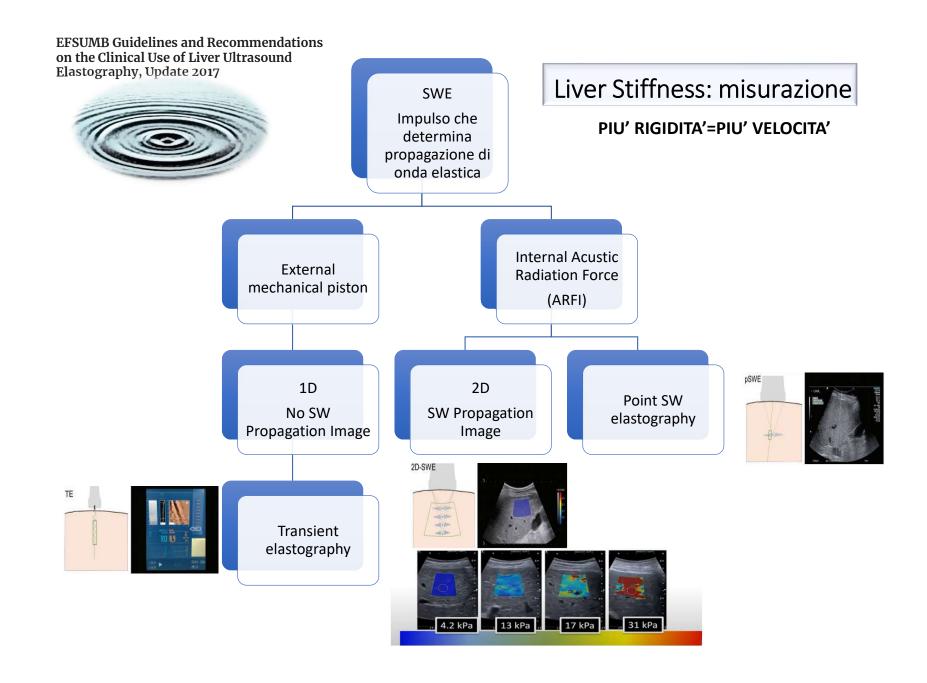

Fibrosis biomarkers panels Year, Count 569 results


Liver MR elastography

- Meno influenzata dall'obesità,
- Ma costosa con disponibilità limitata.

☐ Quantificazione dei biomarcatori


Test		Description							
Indirect fibrosis biomarker panels									
AST:ALT ratio (AAR)	AST (IU/L)/AL	「(IU/L)							
AST-to-platelet ratio index (APRI)	(AST (IU/L)/(U	LN))/platelet count (×109 /L) × 100							
BARD score	Weighted sun >-0.8 = 2 poir	n of BMI >-28 = 1 point, AST/ALT ratio nts, T2DM = 1							
Fibrosis-4 index	Age × AST (IU) (IU/L)	/L)/platelet count (×109 /L) × O ALT							
NAFLD fibrosis score	1.13 × IFG or	7 × age (years) + 0.094 × BMI (kg/m2) + F2DM (yes = 1, no = 0) + 0.99 × AST/ALT platelet count (×109 /L) - 0.66 ×							
NAELD Eibrosis Sos									



NAFLD Fibrosis Score			
Source	Sensitivity	Specificity	AUROC
Balakrishnan et al.	81.1%	66.1%	0.790
Balakrishnan et al.	32.4%	95.2%	0.790
Bril et al.	91%	40%	0.640
Bril et al.	68%	55%	0.640
Caussy et al.	90%	59%	0.840
Harrison et al.	71%	48%	0.580
Marella et al.	57%	84%	0.810
Singh et al.	63.7%	70%	0.720
Singh et al.	94.6%	16.9%	0.720
Jdelsman et al.	85%	38%	0.720
Idelsman et al.	40%	85%	0.720
ibrosis-4 Index	40%	83%	0.720
Source	Sensitivity	Specificity	AUROC
Balakrishnan et al. Balakrishnan et al.	56.8% 40.5%	77.4% 100%	0.770 0.770
Bril et al.	33%	99%	0.780
Bril et al.	68%	75%	0.780
Caussy et al.	90%	39%	0.780
larrison et al.	69%	64%	0.670
Vlarella et al.	29%	98%	0.880
Nielsen et al.	87%	59%	0.790
singh et al.	44.1%	93%	0.770
singh et al.	72.6%	64.4%	0.770
Jdelsman et al.	58%	86%	0.790
Jdelsman et al.	21%	99%	0.790
AST to Platelet Ratio Inde	×		
Source	Sensitivity	Specificity	AUROC
Balakrishnan et al.	48.7%	88.7%	0.700
Bril et al.	31%	99%	0.860
Bril et al.	84%	75%	0.860
Vlarella et al.	14%	98%	0.830
Nielsen et al.	79%	51%	0.680
ingh et al.	16.5%	97.4%	0.740
ingh et al.	27.9%	94.7%	0.740
Jdelsman et al.	24%	99%	0.810
BARD Score	24/8	9976	0.810
Source	Sensitivity	Specificity	AUROC
Balakrishnan et al.	75.7%	59.7%	0.760
nhanced Liver Fibrosis T		33.770	0.700
ource	Sensitivity	Specificity	AUROC
darrison et al.	67%	63%	0.680
ounossi et al.		88.9%	
	57.5%		0.810
rounossi et al. rounossi et al.	19.5% 58.2%	99.1% 84.1%	0.810
ounossi et al.	17.7%	99.5%	0.790
ibroTest ource			
	Sensitivity	Specificity	AUROC
	17.0%	98.0%	0.700
Bril et al.		74.0%	0.700
Bril et al. Bril et al.	64.0%		
Bril et al. Bril et al. AST/ALT Ratio			
Bril et al. Bril et al. AST/ALT Ratio Source	Sensitivity	Specificity	AUROC
Bril et al. Bril et al. AST/ALT Ratio Source Nielsen et al.	Sensitivity 63%	64%	0.680
Source Bril et al. Bril et al. AST/ALT Ratio Source Nielsen et al. Singh et al.	Sensitivity		

Test	Description
	Direct fibrosis biomarker panels
ELF	ELF = -7.412 + (In(HA)*0.681) + (In(PIIINP)*0.775) + (In(TIMP1)*0.494
FibroTest	Patented algorithm combining total bilirubin, GGT, a2-macroglobulin, apolipoprotein A1, and haptoglobin, corrected for age and gender
FibroMeter NAFLD	Patented algorithm combining age, body weight, glucose, AST, ALT, ferritin and platelet count
Hepascore	Algorithm containing age, gender, a2-macroglobulin, hyaluronic acid and bilirubin
ADAPT	$ADAPT = exp(log10((age \times PRO-C3)/O(platelet count))) + T2DM$
FIB C3	FIBC3 = -5.939 + (0.053*age) + (0.076*BMI) + (1.614*T2DM) - (0.009*platelet count) + (0.071*PRO-C3)
ABC3D	Age >50 = 1 point, BMI >30 = 1 point, platelet count 15.5 = 1 point, T2DM = 2 points

AUROC

L'ELASTOSONOGRAFIA MISURA LA STIFFNESS

NON MISURA LA FIBROSI

Journal of Hepatology 2019 vol. 70 | 545-547

Update to the Society of Radiologists in Ultrasound Liver Elastography Consensus Statement-Radiol 2020

Il paziente deve digiunare per minimo 4 ore prima dell'esame.

L'esame deve essere eseguito con il paziente in posizione supina o leggermente laterale sinistra con il braccio sollevato sopra la testa per aumentare lo spazio intercostale. Respiro possibilmente neutrale

Le misurazioni dovrebbero essere effettuate attraverso un approccio intercostale nella posizione della migliore finestra acustica.(V-VIII o VII S)

Misurazioni : la posizione ottimale è minimo di 1–2 cm e un massimo di 6 cm sotto la capsula epatica onde evitare artefatti da riverbero

Valore mediano: per P-SWE 10 misurazioni di qualità; per 2D SWE 5 misurazioni. Il criterio di affidabilità più importante è un IQR/M del<30%

Evitare i grandi vasi sanguigni, i dotti biliari e le masse.

Good US= good elastography examination

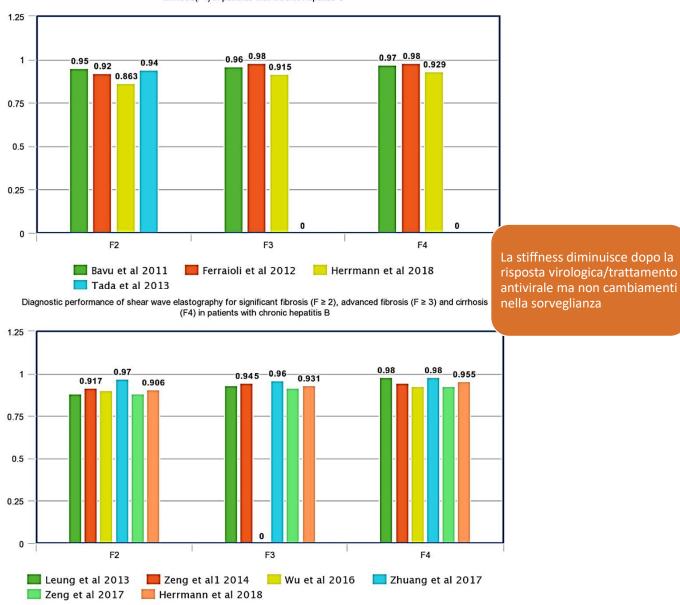
E' richiesto il rispetto di un protocollo rigoroso

SWE training minimo per operatori con + di 300 esami ecografici (WFUMB 2018)

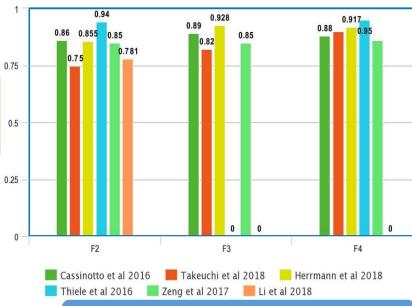
La fattibilità e l'affidabilità dell'elastografia epatica dipendono da

Fattori correlati al fegato
☐ La quantità di fibrosi e la sua distribuzione
☐ Fattori di confusione (infiammazione, colestasi, congestione)
□ Differenze inter-eziologia e intra-eziologia (difficoltà nella definizione di valori specifici di elastografia)
Fattori correlati al paziente
☐Stretto spazio intercostale
□Ascite
☐ Capacità di tenere l'apnea

Reliability or Author, Journal Year **Nb Patients** Liver Disease Applicability (%) Bota , UMB 2015 * 127 CLD 99.2 Poynard, PLosOne 2016 * 2251 89.6 CLD 454 83.7 Yoon, JUM 2014 CLD Cassinotto, J Hepatol 2014 349 89.6 CLD Cassinotto, Hepatol 2016 291 NASH 79.7 Elkrief, Radiol 2014 77 Cirrhosis 83


* No biopsy performed

Author, Journal Year	Nb Meas.	Nb Op.	Nb Sess.	Nb Subj.	Intra-Op ICC	Inter-Session ICC	Inter-Operator ICC
Ferraioli, EJR 2012	10	2	2	42 healthy	Expert: 0.95 Novice: 0.93	Expert: 0.84 Novice: 0.65	0.88
Hudson, UMB 2013	5	2	2	15 healthy Segt 6	Op1: 0.91 Op2: 0.92	Op1: 0.63 Op2: 0.84	0.83
Yoon, JUM 2014	15	1	2	454 patients	2 meas: 0.93 6 meas: 0.96	0.95 Fatty liver: 0.83 CLD: 0.88 Cirrhosis: 0.96	
Cassinotto, Dig Liver Dis 2015	5	2	1	401 cirrhotic patients	Liver: 0.95 Spleen: 0.96	N/A	Liver: 0.94 Spleen: 0.87
Thiele, EJU 2016	5	1	1	142	0.95	N/A	N/A


Misurazioni SWE Affidabilità e applicabilità

SWE r-t Riproducibilità

Diagnostic performance of shear wave elastography for significant fibrosis (F ≥ 2), advanced fibrosis (F ≥ 3) and cirrhosis(F4) in patients with chronic hepatitis C

Diagnostic performance of shear wave elastography for significant fibrosis ($F \ge 2$), advanced fibrosis ($F \ge 3$) and cirrhosis ($F \ge 3$) and cirrhos

Prestare attenzione nell'interpretazione dei risultati in pazienti con grave steatosi e obesità.

Diagnostics 2022, 12, 2373

Da quando l'Elastografia ecografica è disponibile molti studi hanno dimostrato come può essere utilizzata per prevedere l'ipertensione portale(CSPH: rischio di scompenso e morte) con sensibilità diagnostica, specificità, accuratezza soddisfacenti.

Basic characteristics and diagnostic efficacy of LSM in assessing portal hypertension.

First Author	Year	Country	Type of Study	Number of Patients	Disease	Diagnostic Method	Sensitivity	Specificity	Accuracy	AUC	Optimal Cut-Off Value	Correlation Coefficient
Laure Elkrief [22]	2021	Switzerland, France, Spain,	Retrospective	273 patients	Compensated liver cirrhosis	TE-LSM	0.94	0.97	0.84	0.93	20 kPa for best sensitivity and 10 kPa for best specificity	NA
Benjamin L. Shneider [23]	2020	USA, Canada	Prospective	550 patients	Pediatric cholestatic liver disease	TE-LSM	NA	NA	NA	NA	NA	NA
Alexandra Souhami [24]	2020	France	Retrospective	140 patients	Liver cirrhosis	TE-LSM	NA	NA	NA	0.83 for CSPH	13.6 kPa (rule-out); 21 kPa (rule-in)	0.75
Horia Stefanescu [25]	2020	Romania	Prospective	127 patients	Chronic liver disease	2D-SWE (LSM)	0.95 with cut-off value of 9 kPa	0.95 with cut-off value of 13 kPa	0.845 with cut-off value of 11.3 kPa	NA	13.6 kPa	NA
Jinzhen Song [27]	2020	China	Systematic review and meta-analysis	9 studies, 679 patients	Chronic liver disease	TE-LSM	0.89 for CSPH; 0.88 for SPH	0.71 for CSPH; 0.74 for SPH	NA	NA	21.8 kPa for CSPH; 29.1 kPa for SPH	NA
Jinzhen Song [30]	2018	China	Systematic review and meta-analysis	11 studies, 910 patients	Chronic viral liver disease	TE-LSM	0.96 with cut-off value of 13.6 kPa; 0.85 with cut-off value of 18 kPa; 0.74 when cut-off value of 22 kPa	0.60 with cut-off value of 13.6 kPa; 0.80 with cut-off value of 18 kPa; 0.94 when cut-off value of 22 kPa	NA	NA	17.6 kPa	NA
Hee Mang Yoon [32]	2017	Korea	Retrospective	32 patients	Chronic liver disease	SWE (LSM)	0.875	0.84	NA	0.915	18.4 kPa	NA
Romanas Zykus [33]	2015	Lithuania	Prospective	107 patients	Chronic liver disease	TE-SSM	0.88 for CSPH; 0.828 for SPH	0.875 for CSPH; 0.800 for SPH	0.887 for CSPH; 0.831 for SPH	NA	47.6 kPa for CSPH; 50.7 kPa for SPH	NA
Antonio Colecchia [34]	2012	Italy	Prospective	100 patients	HCV related liver cirrhosis	TE-LSM	0.954 for CSPH; 0.981 for SPH	0.686 for CSPH; 0.630 for SPH	NA	NA	16 kPa for CSPH; 16.4 kPa for SPH	NA
D Attia [35]	2015	Germany	Cross- sectional	94 patients	Progressive chronic liver disease	LSM	0.97 for CSPH; 0.93 for SPH	0.89 for CSPH; 0.73 for SPH	NA	0.929 for CSPH; 0.872 for SPH	2.17 m/s for CSPH; 2.54 m/s for SPH	NA

First Author	Year	Country	Type of Study	Number of Patients	Disease	Diagnostic Method	Sensitivity	Specificity	Accuracy	AUC	Optimal Cut-Off Value	Correlation Coefficient
Bogdan Procopet [36]	2015	Spain, Canada	Prospective	88 patients	Compensated liver cirrhosis	2D-SWE (LSM)	0.808	0.821	NA	0.858	17 kPa	NA
Chul Min Lee [37]	2016	Korea	Retrospective	47 patients	Liver cirrhosis resulting from alcohol, HBV, HCV, etc.	SWE (LSM)	0.74	0.83	NA	0.75	19.7 kPa	0.516
Philipp Schwabl [38]	2015	Austria	Retrospective	278 patients	Chronic liver disease	TE-LSM	0.936	0.87	0.889	0.957	16.1 kPa	0.836
Elba Llop [39]	2017	Spain	Retrospective	442 patients	Compensated advanced chronic liver disease	TE-LSM	NA	NA	0.714	NA	28 kPa	NA
M Lemoine [40]	2008	France	Retrospective	44 patients	HCV or alcohol related liver cirrhosis	TE-LSM	0.55	0.90	NA	NA	22.0 kPa	NA
Francesco Vizzutti [41]	2007	Italy	Retrospective	61 patients	HCV related chronic liver disease	TE-LSM	0.97 for CSPH; 0.94 for SPH	NA	NA	0.99 for CSPH; 0.92 for SPH	13.6 kPa for CSPH; 17.6 kPa for SPH	0.81 for CSPH; 0.91 for SPH
M Sanchez- Conde [42]	2011	Spain	Prospective	38 patients	HIV/HCV coinfected with chronic liver disease	TE-LSM	0.9286 for CSPH; 0.8261 for SPH	0.50 for CSPH; 0.6667 for SPH	NA	0.80 for CSPH; 0.80 for SPH	14 kPa for CSPH; 23 kPa for SPH	0.46
Thomas Reiberger [43]	2012	Austria	Prospective	794 patients	Chronic liver damage	TE-LSM	0.956	0.667	NA	0.794	8 kPa	0.799
Praveen Sharma [44]	2013	India	Prospective	270 patients	Liver cirrhosis	TE-SSM	0.91 for esophageal varices	0.72 for esophageal varices	0.86 for esophageal varices	NA	27.3kPa	NA

LSM: liver stiffness measurement; TE: transient elastography; CSHP: clinically significant portal hypertension; SPH: severe portal hypertension; SWE: shear-wave elastography; HBV: hepatitis B virus; HCV: hepatitis C virus; HIV: human immunodeficiency virus; AUC: area under curve.

Il metodo più riproducibile per ipertensione portale è la misurazione del gradiente di pressione venosa epatica (HVPG) ma:

- □F' un metodo invasivo
- ☐Gold standard nei pz con cirrosi virale e alcol-correlata
- Nei pz con <u>cirrosi correlata alla NASH</u>, sebbene un HVPG ≥10 mmHg rimanga fortemente associato alla presenza di segni clinici di ipertensione portale, questi segni possono essere presenti anche in una piccola percentuale di pazienti con valori di HVPG <10 mmHg</p>

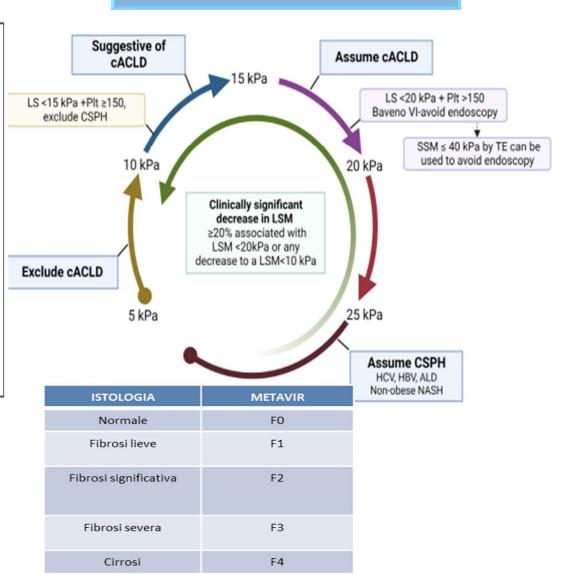
Linee guida e trasferibilità di soglie tra diversi fornitori

EFSUMB 2017- WFUMB 2018

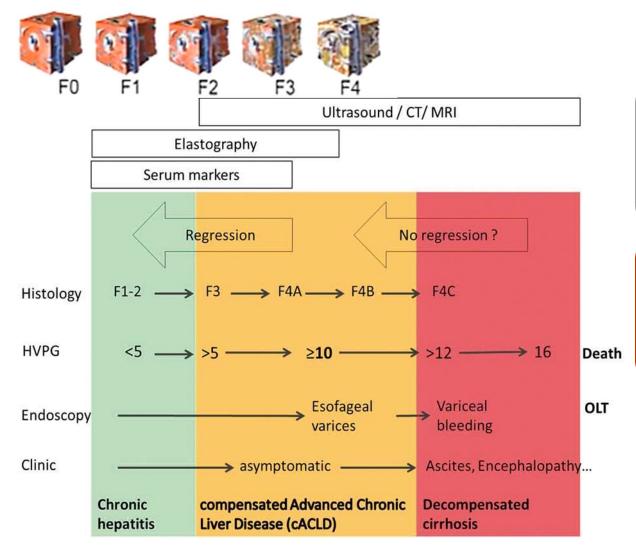
- I valori di cut-off per la stadiazione della fibrosi epatica sono specifici dei diversi sistemi ecografici
- Poichè utilizza il punteggio METAVIR dove è maggiore la variabilità tra vari sistemi

SRU 2020

- Le linee guida sono fatte escludendo (no malattia o malattia minima) o confermando la cACLD o CSPH, rispetto a fornire uno stadio esatto
- Tuttavia, la varianza è diminuita anche per gli sforzi fatti dalla Quantitative Image Biomarker Alliance(QIBA)


REGOLA DEL 4 SRU 2020

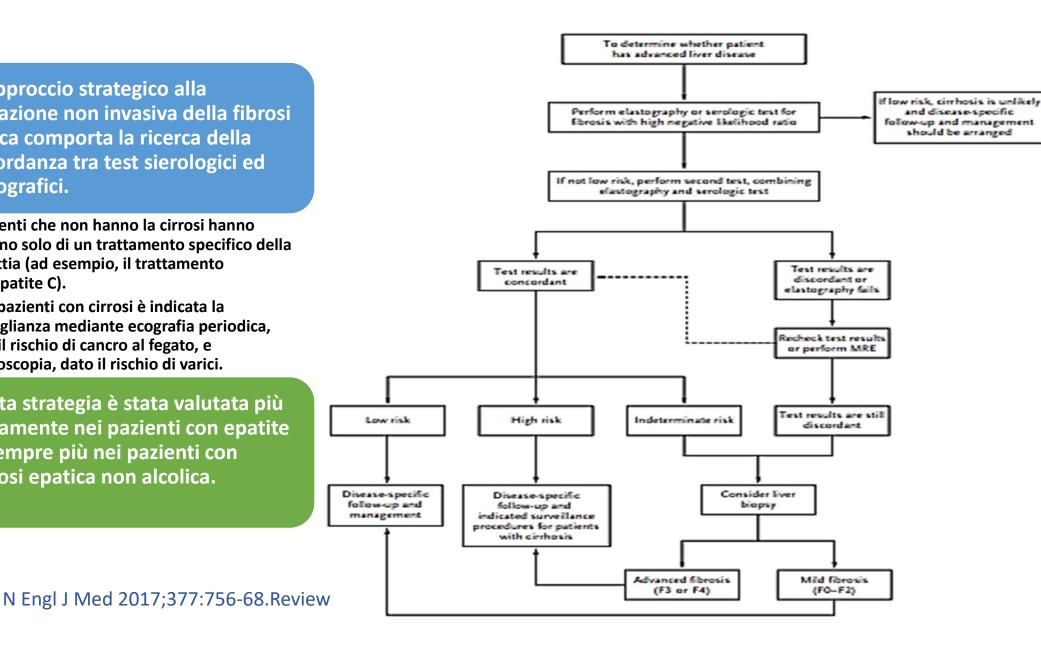
Recommendation for Interpretation of Liver Stiffness Values Obtained with ARFI Techniques in Patients with Viral Hepa-	
titis and NAFLD	


Liver Stiffness Value	Recommendation
≤5 kPa (1.3 m/sec)	High probability of being normal
<9 kPa (1.7 m/sec)	In the absence of other known clinical signs, rules out cACLD. If there are known clinical signs, may need further test for confirmation
9-13 kPa (1.7-2.1 m/sec)	Suggestive of cACLD but need further test for confirmation
>13 kPa (2.1 m/sec)	Rules in cACLD
>17 kPa (2.4 m/sec)	Suggestive of CSPH

Note.—ARFI = acoustic radiation force impulse, cACLD = compensated advanced chronic liver disease, CSPH = clinically significant portal hypertension, NAFLD = non-alcoholic fatty liver disease.

REGOLA DEL 5 BAVENO VII

Storia naturale dei test diagnostici non-invasivi nella malattia epatica cronica avanzata compensata

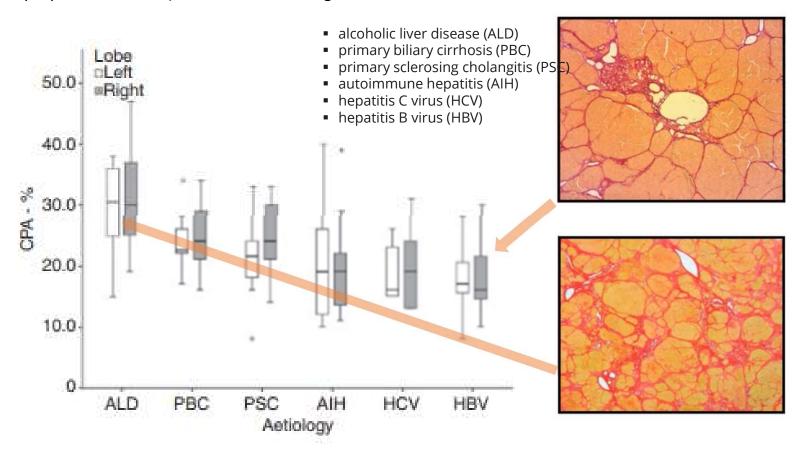


Periodo di tempo più appropriato per l'utilizzo di diverse tecniche al fine di massimizzare le informazioni per l'uso clinico.

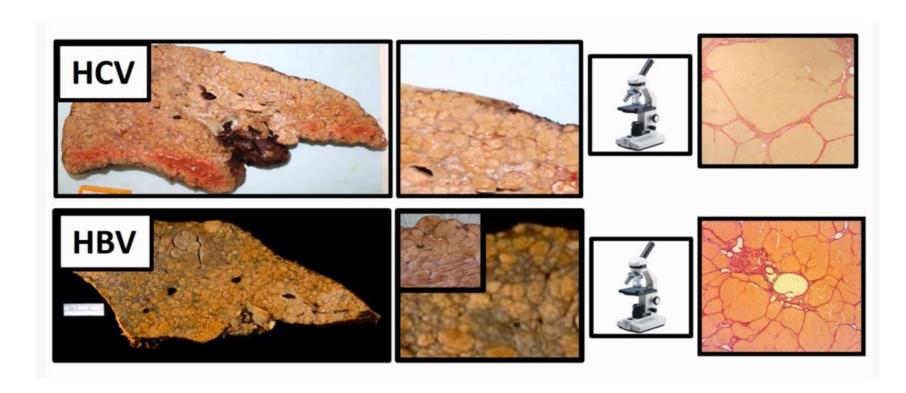

La combinazione di diversi test non invasivi può migliorare ulteriormente la quantità di informazioni e ridurre il rischio di risultati falsi positivi e falsi negativi. Un approccio strategico alla valutazione non invasiva della fibrosi epatica comporta la ricerca della concordanza tra test sierologici ed elastografici.

- I pazienti che non hanno la cirrosi hanno bisogno solo di un trattamento specifico della malattia (ad esempio, il trattamento dell'epatite C).
- Per i pazienti con cirrosi è indicata la sorveglianza mediante ecografia periodica, dato il rischio di cancro al fegato, e l'endoscopia, dato il rischio di varici.

Questa strategia è stata valutata più ampiamente nei pazienti con epatite C e sempre più nei pazienti con steatosi epatica non alcolica.


Le misurazioni della stiffness del fegato non sono sempre le stesse in termini di valori limite :ci sono differenze inter-eziologia e intra eziologia

Fibrosis distribution in explanted cirrhotic livers

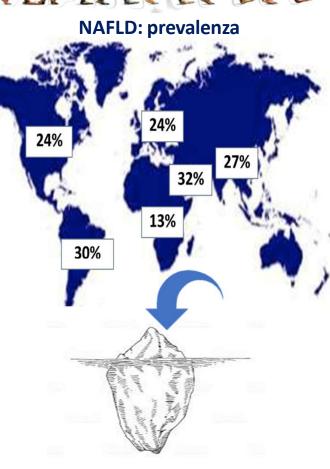

Andrew Hall, ¹ Giacomo Germani, ² Graziella Isgrò, ² Andrew K Burroughs ² & Amar P Dhillon ¹ The Department of Cellular Pathology, UCL Medical School, Royal Free Campus, London, and ²The Royal Free Sheila Sherlock Liver Centre and University Department of Surgery, UCL, Royal Free Hospital, London, UK

I fegati cirrotici espiantati in pz clinicamente sovrapponibili hanno mostrato diverse CPA(collagen proportionate area) nelle diverse eziologie.

Epatiti Virali Croniche

- La malattia epatica cronica **HCV** ha una progressione più lineare nella sua storia naturale
- L'**HBV** potrebbe essere caratterizzata da:
 - Flairs di infiammazione che influenzano il valore della stiffness
 - Nelle sue fasi più avanzate la macronodularità più pronunciata dare valori di stiffness più bassi

NAFLD UNA SFIDA DIAGNOSTICA


Per il numero di persone/pz coinvolti

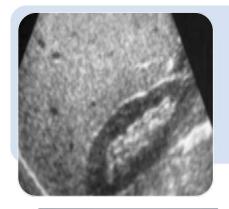
Problemi con disponibilità, accettabilità, costi, formazione

- Per la tipologia di pz(obesità)
- Continui sviluppi e rapida evoluzione di tutta la tecnologia

Validazione, standardizzazione, soglie

- Estensione della tecnica diagnostica alla popolazione pediatrica
- Follow-up

Youssi, Z.Met al Global Epidemiology of Nonalcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016


Pazienti con steatosi : possibile valutazione ecografica di:


- steatosi e grado
- fibrosi e grado
- infiammazione

L'ecografia in B MODE è stata a lungo il metodo più comunemente usato nella valutazione della steatosi epatica ,ma non distinguie NAFLD/NASH

GRADO I –LIEVE:

Discrepanza ecogenicità fegato/rene dx senza

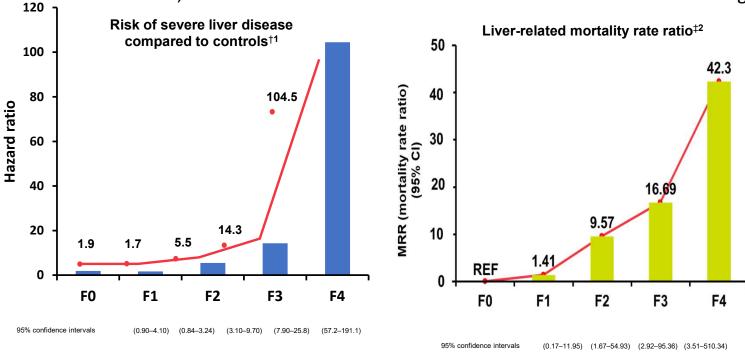
attenuazione

GRADO II-MODERATA:

Bright liver +
attenuazione in
profondità ma con
diaframma ancora
visibile

GRADO III-SEVERA:
bright liver +
attenuazione oltre il
60% da impedire la
visualizzazione del
diaframma

META-ANALYSIS - LIVER ULTRASOUND FOR LIVER STEATOSIS ASSESSMENT


- Large meta-analysis (1), with 49 studies
- 4720 subjects, with moderate and severe steatosis
- US sensitivity 84.8% (CI 95%: 79.5-88.9%),
- US specificity 93.6% (CI 95%: 87.2-97.0), as compared to liver biopsy.

PERCHE' E' IMPORTANTE QUANTIFICARE LA STEATOSI?

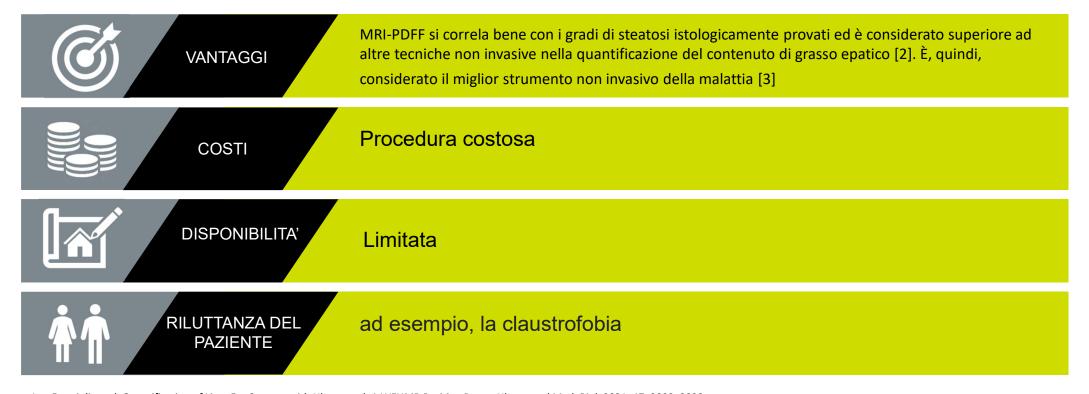
- □ La diagnosi e la quantificazione del grasso epatico possono predire il futuro sviluppo di diabete ed eventi cardiovascolari.
- □E' stato dimostrato che la steatosi significativa è associata a progressione della fibrosi in pazienti con NAFLD, aumentando sostanzialmente il rischio di morbilità e mortalità legate al fegato

Adapted from Hagström H et al. J Hepatol 2017;67:1265 -1273

Adapted from Dulai PS et al. Hepatology 2017;65(5):1557-1565

^{· *}Findings based on differing study populations and analyses not intended for comparison purposes

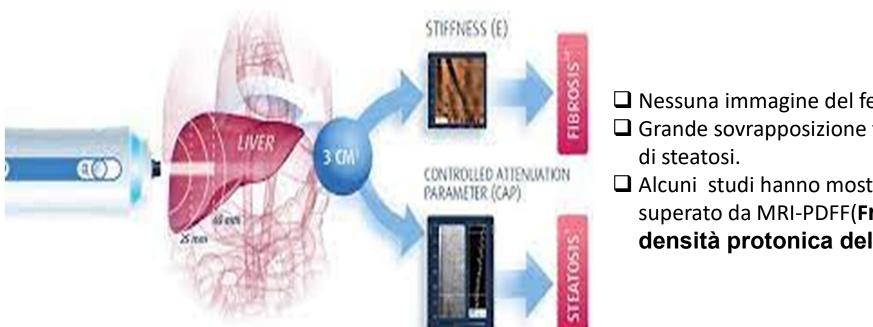
[†]From a retrospective cohort study of 646 biopsy-proven NAFLD patients, each matched to 10 controls. Severe liver disease was defined as cirrhosis, liver decompensation/failure or hepatocellular carcinoma


^{*}From a meta-analysis of 5 multinational cohorts (1,495 NAFLD patients with 17,452 PYF). Liver-related mortality was a secondary outcome and was defined by investigators

NAFLD, nonalcoholic fatty liver disease; PYF, patient years of follow-up

^{1.} Hagström H et al. J Hepatol 2017;67:1265 -1273; 2. Dulai PS et al. Hepatology 2017;65(5):1557-1565.

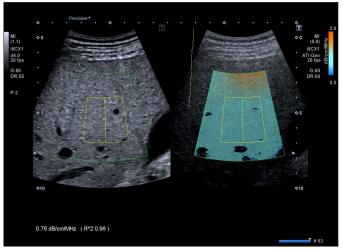
Per la diagnosi di steatosi epatica ,secondo la World Federation for Ultrasound in Medicine and Biology (WFUMB), metodo considerato standard di riferimento è: la frazione grassa a densità protonica della


risonanza magnetica (MRI-PDFF) ¹

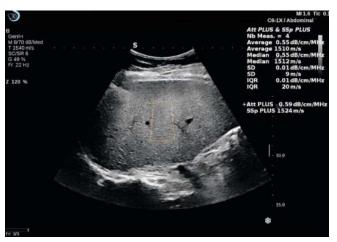
- 1. Ferraioli, et al. Quantification of Liver Fat Content with Ultrasound: A WFUMB Position Paper. Ultrasound Med. Biol. 2021, 47, 2803–2820
- 2. Permutt, Z.; et al. Correlation between Liver Histology and Novel Magnetic Resonance Imaging in Adult Patients with Non-Alcoholic Fatty Liver Disease-MRI Accurately Quantifies Hepatic Steatosis in NAFLD. Aliment. Pharmacol. Ther. 2012, 36, 22–29. [CrossRef]
- 3. Choi, S.J.; et al. Magnetic Resonance-Based Assessments Better Capture Pathophysiologic Profiles and Progression in Nonalcoholic Fatty Liver Disease. Diabetes Metab. J. 2021, 45, 739–752

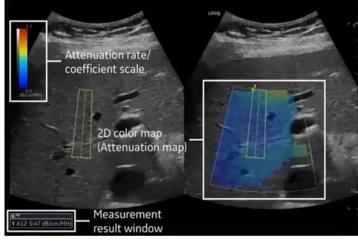
Controlled attenuation parameter (CAP)

• Il primo strumento disponibile dal 2010 è il parametro di attenuazione controllata (CAP) :algoritmo disponibile sul sistema FibroScan (Echosens) per la quantificazione della NAFLD. Valuta l'attenuazione del fascio di ultrasuoni, che è direttamente correlata al contenuto di grasso del fegato in db/m.


- ☐ Nessuna immagine del fegato.
- ☐ Grande sovrapposizione tra gradi consecutivi
- ☐ Alcuni studi hanno mostrato che il CAP è superato da MRI-PDFF(Frazione grassa a densità protonica della RMN)

Quantificazione dell'attenuazione del fascio Ultrasonoro


Negli ultimi anni è stata sviluppata una tecnologia per quantificare l'attenuazione del fascio ultrasonoro incorporata negli ecografi utilizzando principi simili (<u>misurazione dell'attenuazione</u>) e sviluppate indipendentemente l'una dall'altra.

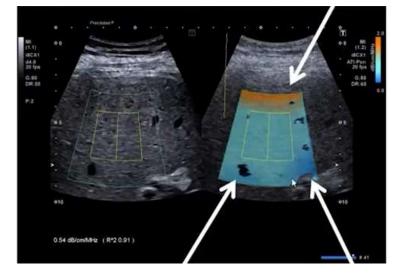

ATT (Hitachi)

ATI (Canon)

ATT Plus(Supersonic)+ speed sound

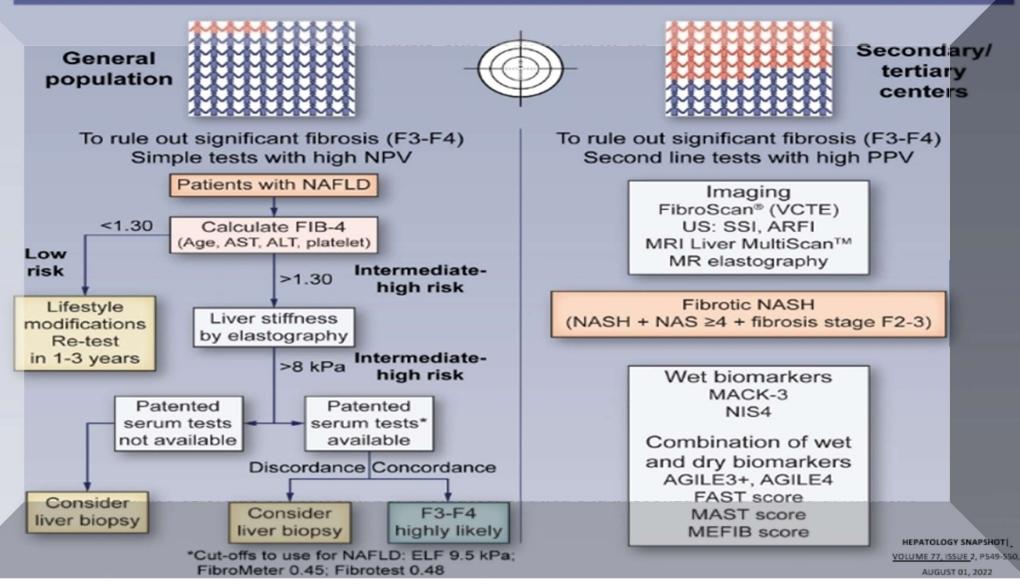
UGAP(GE)

Il coefficiente di attenuazione è il valore mediano di 5 misure consecutive L'affidabilità è misurata come valore R2: il migliore R2 =0. 80-0.90.


Raccomandazioni base durante l'imaging

- ☐ Digiuno almeno 3 ore prima dell'esame
- Posizione sdraiata supina con il braccio destro nella massima adduzione
- Respirazione sospesa durante la misurazione: trattenere il respiro per alcuni secondi alla fine dell'espirazione
- Quando si posiziona la ROI evitare parti di parenchima epatica con vasi sanguigni, dotti biliari e lesioni epatiche focali
- ☐ Posizionare la ROI almeno 2 cm sotto la capsula epatica per evitare artefatti di riverbero
- ☐ Mappa a colori: evitare aree di colore notevolmente diverso
- ☐ Mantenere l'impulso di forza della radiazione acustica perpendicolare ala capsula

ARTEFATTI



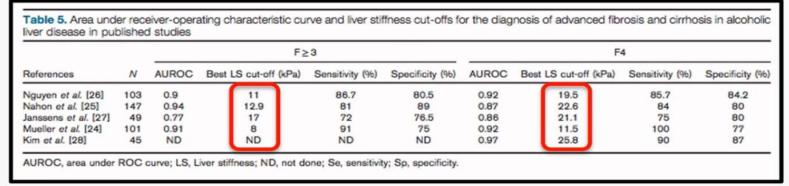
Studi che valutano l'accuratezza dei metodi basati su ultrasuoni nella quantificazione della steatosi rispetto ai metodi di riferimento (LB e MRI-PDFF)

Authors/Reference	No	Etiology	Reference Method	Method	Cut-Off S1	AUROC	Cut-Off S2	AUROC	Cut-Off S3	AUROC
Bae et al.	108	CLD	LB	ATI 1	0.635	0.843	0.7	0.886	0.745	0.926
Tada et al.	148	CLD	LB	ATI 1	0.66	0.85	0.67	0.91	0.68	0.91
Jeon et al.	87	CLD	MRI- PDFF	ATI 1	0.59	0.76				
Ferraioli et al.	129	NAFLD and controls	MRI- PDFF	ATI 1	0.63	0.91	0.72	0.95		
Ferraioli et al.	72	NAFLD	MRI- PDFF	ATI-PEN 1 ATI-GEN 1	>0.69	0.90				
Dioguardi et al.	101	CLD	LB	ATI 1	0.69	0.80	0.72	0.89		
Sugimoto et al.	111	NAFLD	LB	ATI 1	0.67	0.88	0.72	0.86	0.86	0.79
Tada et al.	119	CLD	MRI- PDFF	ATI 1	0.63	0.81	0.72	0.87	0.75	0.91
Bae et al.	120	LR for susp. mlg	LB	ATI 1	0.66	0.914	0.66	0.914		
Lee at al.	102	NAFLD	LB	ATI 1	0.64	0.93	0.7	0.9	0.73	0.83
Hsu et al.	28	CLD	LB	ATI 1	0.69	0.97	0.78	0.99	0.82	0.97
Kwon et al.	100	CLD	MRI- PDFF	ATI 1	0.62	0.91	0.72	0.94		
Jang et al.	57	LT donors	LB	ATI 1	0.62	0.808				
Tamaki et al.	351	CLD	LB	ATT 1	0.62	0.79	0.67	0.87	0.73	0.96
Fujiwara et al.	163	CLD	LB	UGAP 1	0.53	0.9	0.60	0.95	0.65	0.96
Tada et al.	126	CLD	MRI- PDFF	UGAP 1	0.60	0.92	0.69	0.87	0.69	0.89
Ogino et al.	84	NAFLD	LB	UGAP 1	0.6	0.94	0.71	0.95	0.72	0.88
Kuroda et al.	202	NAFLD	LB	UGAP 1	0.49	0.89	0.65	0.91	0.69	0.92
Kuroda et al.	105	NAFLD	LB	UGAP 1	0.62	0.89	0.72	0.90	0.75	0.91
Imajo et al.	1010	CLD	MRI- PDFF	UGAP 1	0.65	0.910	0.71	0.912	0.77	0.894
Jeon et al.	120	NAFLD	MRI-	TAI 1	>0.884	0.861				
Lin et sl.	204	NAFLD and controls	PDFF MRI- PDFF	TSI BSC ²	>91.2	0.964				
Labyed et al.	101	NAFLD	LB MRI- PDFF	UDFF 3	8.1 6.34	0.94	15.9	0.88	16.1	0.83
Bae et al.	194	CLD or post-OLT	LB	NLV	1.095	0.911	1.055	0.974	1.025	0.954
Zhao et al.	34	MAFLD	LB	NLV	1.145	0.875	1.1	0.735	1.1	0.583
Imbault et al.	17	NAFLD risk	MRI- PDFF LB	SSE 4	1.541 1.555	0.942 0.952				
Dioguardi et al.	100	CLD	MRI- PDFF	SSE 4	≤1.537	0.882	1.511	0.989	1.511	0.989

¹ Value expressed in dB/cm/MHz. ² Value expressed in 1/cm-sr. ³ Value expressed in %. ⁴ Value expressed in mm/μs. Abbreviations: No: number; AUROC: area under the curve; S1: steatosis grade 1; S2: steatosis grade 2; S3: steatosis grade 3; MRI-PDFF: magnetic resonance imaging proton density fat fraction; NAFLD: non-alcoholic fatty liver disease; MAFLD: metabolic-associated fatty liver disease; CLD: chronic liver disease; LB: liver biopsy; LR: liver resection; OLT: orthotopic liver transplantation; susp.mlg: suspected malignancy; ATI: attenuation imaging; ATI: attenuation measurement function; NLV: normalized local variance; SSE: speed of sound estimation; BSC: backscatter coefficient; TAI: tissue attenuation imaging; TSI: tissue scatter distribution imaging; UGAP: ultrasound-guided attenuation parameter.

Non-invasive diagnosis

Malattia Alcol relata(ALD)


Effetto tossico e infiammazione alcol relati

- Aumento valori di stiffness non esclusivamente legati alla fibrosi*
- Reversibilità dell'infiammazione e stiffness dopo sospensione di alcol** e possibile regressione della cirrosi con astinenza

Difficile follow-up a causa dell'effetto dell'assunzione di alcol

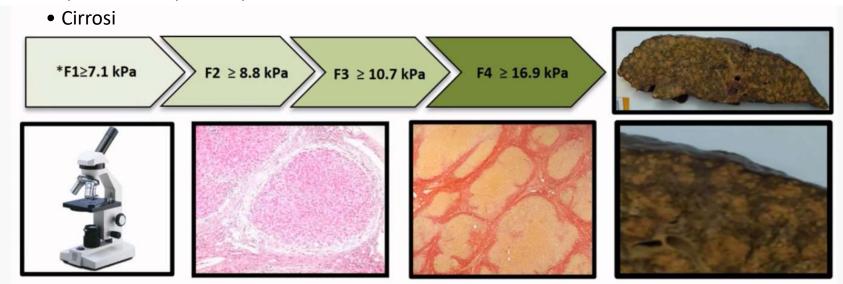
*Mueller S, Millonig G, Sarovska L, et al. Increased liver stiffness in alcoholic liver disease: differentiating fibrosis from steatohepatitis. World J Gastroenterol 2010; 16:966–972. **Trabut JB, Thepot V, Nalpas B, et al. Rapid decline of liver stiffness following alcohol withdrawal in heavy

drinkers. Alcohol Clin Exp Res 2012;36:1407–1411

Fernandez et al. Transient elastography using Fibroscan is the most reliable noninvasive method for the diagnosis of advanced fibrosis

and circhosic in alcoholic liver disease. Fur I Castroenteral Henotal, 2015 Sept 27(0):1074.0

Gastroenterology, 2016 Jan;150(1):123-33. doi: 10.1053/j.gastro.2015.09.040. Epub 2015 Oct 3.

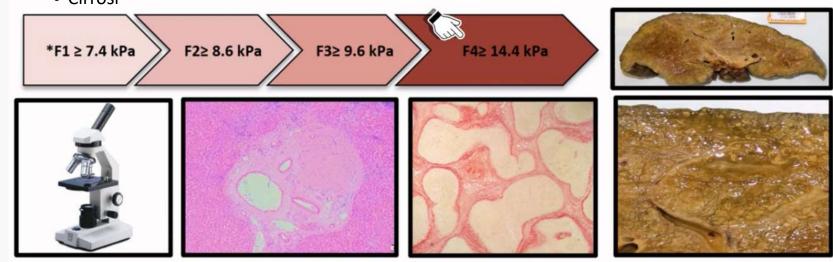

Transient and 2-Dimensional Shear-Wave Elastography Provide Comparable Assessment of Alcoholic Liver Fibrosis and Cirrhosis.

Thiele M1, Detlefsen S2, Sevelsted Møller L3, Madsen BS4, Fuglsang Hansen J5, Fialla AD6, Trebicka J7, Krag A8.

No differenza nell'accuratezza diagnostica tra le tecniche TE e 2DSWE nell' identificare la fibrosi significativa e la cirrosi con valori di rispettivamente di 9.6 kPa e 19.7 kPa nella TE e 10.2 e 16.4 kPa nella 2DSWE.

COLANGITE PRIMARIA PRIMITIVA PBC

- Malattia epatica autoimmune ,T cell mediata
- Colpisce i dotti biliari distali con infiammazione e fibrosi periduttale
- <u>Distribuzione irregolare della fibrosi elevata variabilità della stiffness che porta talora a</u> sottovalutare la fibrosi
- Ipertensione portale presinusoidale



Vi è una preliminare evidenza che la misurazione della stiffness epatica con SWE, in particolare con metodiche ARFI, abbia un buon valore prognostico ma deve essere interpretata con cautela

- Corpechot C,et al.Noninvasive elastography based assessment of liver fibrosis progression and prognosis in primary biliary cirrhosis. Hepatology 2012; 56: 198–208
- Ruediger S., et al Acoustic Radiation Force Impulse (ARFI) Elastography in Autoimmune and Cholestatic Liver Diseases Ann. of Hepat. January-February, Vol. 18 No. 1, 2019: 23-29

COLANGITE SCLEROSANTE PRIMITIVA (PSC)

- Malattia epatica colestatica cronica a causa sconosciuta
- Infiammazione dei dotti biliari intra e/o extra-epatici che porta alla fibrosi biliare
- È in genere una malattia segmentale/regionale
- Fibrosi periportale
- Cirrosi

Notevole differenza intra eziologia

COLANGITE SCLEROSANTE PRIMITIVA (PSC)

Il follow-up della misurazione della stiffness potrebbe fornire informazioni prognostiche La colestasi ha un alto impatto sul valore della stiffness

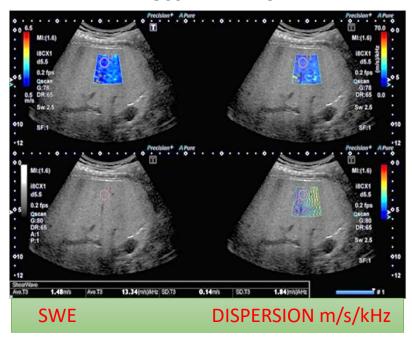
La distribuzione segmentale della malattia potrebbe far sottovalutare la gravità della PSC se ci basiamo sul solo valore di stiffness che potrebbe aver campionato un'area "normale" di parenchima epatico

Corperchot et al. Baseline values and changes in liver stiffness measured by transient elastography are associated with severity of fibrosis and outcomes of patients with primary sclerosing cholangitis. Gastroenterology 2014;146(4):970-9.

EPATITE AUTOIMMUNE(AIH)

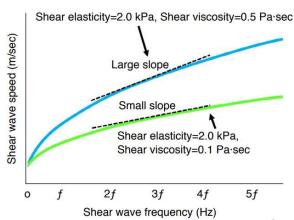
La storia naturale dell'epatite autoimmune è notevolmente etrogenea :

- forme indolenti
- forme con rapido avanzamento del grado di fibrosi epatica che può progredire nonostante il trattamento immunosoppressivo.
- Circa un terzo dei pazienti ha già la cirrosi al momento della diagnosi.



La stiffness è stata segnalata essere molto alta quando è probabilmente secondaria a infiammazione

Ferraioli G, Wong VW, Castera L, et al. Liver ultra-sound elastography: an update to the WFUMB guidelines and recommendations. Ultrasound Med Biol 2018;44(12):2419–40.

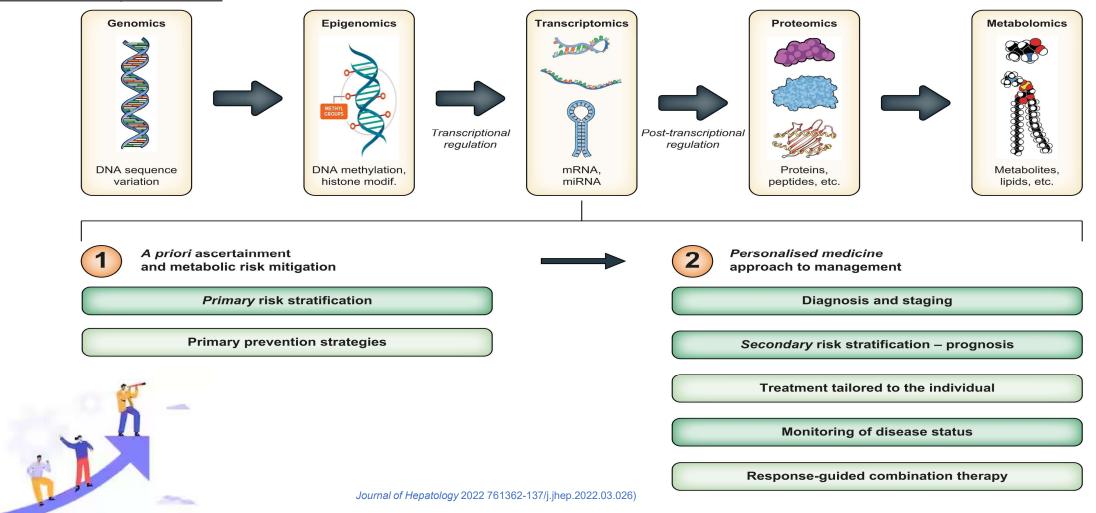

Fibrosi e cirrosi possono essere reversibili in questo ambito e l'elastografia è uno strumento di follow-up affidabile per monitorare l'attività della malattia

E' POSSIBILE VALUTARE L'INFIAMMAZIONE CON L'ECOGRAFIA?

La dispersione acustica è il fenomeno di separazione di un'onda nelle sue componenti di frequenza mentre passa attraverso un materiale. Questa tecnica può essere utilizzata per stimare il gradiente di dispersione della velocità dell'onda sonora rispetto alla frequenza al fine di valutare i cambiamenti nella viscosità del tessuto.

Il valore del gradiente di dispersione è correlato alla viscosità: > è la dispersione > è la viscosità. La viscosità è un parametro che può corrispondere all'infiammazione

K. Sugimoto 2020


INDICAZIONI ALLA BIOPSIA EPATICA NELLA CLD

Valutazione diagnostica

- Epatite acuta e cronica di eziologia incerta
- Diagnosi e stadiazione di alcune forme di epatite cronica che non possono essere adeguatamente caratterizzate con tecniche non invasive (es. epatite autoimmune)
- Caratterizzazione dell'epatite cronica con patogenesi multifattoriale
- Follow-up del trapianto di fegato

Valutazione prognostica

 Valutazione della fibrosi in pazienti con malattia epatica cronica di eziologia nota in cui le tecniche non invasive forniscono risultati incerti Nell'ultimo decennio :sviluppo di piattaforme analitiche ad alto rendimento(scienza dei dati), hanno fornito set di dati genomici, epigenetici, trascrittomici, proteomici, metabolomici e metagenomici :intuizioni sull'eterogeneità sottostante di molti processi CLD suggerendo che le future strategie di gestione offriranno la prospettiva di "medicina di precisione"

